Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Infect Dis Ther ; 12(6): 1625-1640, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2321738

ABSTRACT

INTRODUCTION: The hyperinflammation phase of severe SARS-CoV-2 is characterised by complete blood count alterations. In this context, the neutrophil-to-lymphocyte ratio (NLR) and the platelet-to-lymphocyte ratio (PLR) can be used as prognostic factors. We studied NLR and PLR trends at different timepoints and computed optimal cutoffs to predict four outcomes: use of continuous positive airways pressure (CPAP), intensive care unit (ICU) admission, invasive ventilation and death. METHODS: We retrospectively included all adult patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pneumonia admitted from 23 January 2020 to 18 May 2021. Analyses included non-parametric tests to study the ability of NLR and PLR to distinguish the patients' outcomes at each timepoint. Receiver operating characteristic (ROC) curves were built for NLR and PLR at each timepoint (minus discharge) to identify cutoffs to distinguish severe and non-severe disease. Their statistical significance was assessed with the chi-square test. Collection of data under the SMACORE database was approved with protocol number 20200046877. RESULTS: We included 2169 patients. NLR and PLR were higher in severe coronavirus disease 2019 (COVID-19). Both ratios were able to distinguish the outcomes at each timepoint. For NLR, the areas under the receiver operating characteristic curve (AUROC) ranged between 0.59 and 0.81, and for PLR between 0.53 and 0.67. From each ROC curve we computed an optimal cutoff value. CONCLUSION: NLR and PLR cutoffs are able to distinguish severity grades and mortality at different timepoints during the course of disease, and, as such, they allow a tailored approach. Future prospects include validating our cutoffs in a prospective cohort and comparing their performance against other COVID-19 scores.

3.
J Clin Med ; 11(24)2022 Dec 15.
Article in English | MEDLINE | ID: covidwho-2163472

ABSTRACT

Early therapies to prevent severe COVID-19 have an unclear impact on patients with hematological malignancies. The aim of this study was to assess their efficacy in this group of high-risk patients with COVID-19 in preventing hospitalizations and reducing the SARS-CoV-2 shedding. This was a single-center, retrospective, observational study conducted in the Fondazione IRCSS Policlinico San Matteo of Pavia, Northern Italy. We extracted the data of patients with hematologic malignancies and COVID-19 who received and did not receive early COVID-19 treatment between 23 December 2021, and May 2022. We used a Cox proportional hazard model to assess whether receiving any early treatment was associated with lower rates of hospitalization and reduced viral shedding. Data from 88 patients with hematologic malignancies were extracted. Among the patients, 55 (62%) received any early treatment, whereas 33 (38%) did not. Receiving any early therapy did not significantly reduce the hospitalization rate in patients with hematologic malignancies (HR 0.51; SE 0.63; p-value = 0.28), except in the vaccinated non-responders subgroup of patients with negative anti SARS-CoV-2 antibodies at the time of infection, who benefited from early therapies against SARS-CoV-2 (HR 0.07; SE 1.04; p-value = 0.001). Moreover, no difference on viral load decay was observed. In our cohort of patients with hematologic malignancies infected with SARS-CoV-2, early treatment were not effective in reducing the hospitalization rate due to COVID-19, neither in reducing its viral shedding.

5.
Antimicrob Resist Infect Control ; 11(1): 108, 2022 08 29.
Article in English | MEDLINE | ID: covidwho-2021338

ABSTRACT

Discontinuation of antimicrobial stewardship programs (ASPs) and increased antibiotic use were described during SARS-CoV-2 pandemic. In order to measure COVID-19 impact on ASPs in a setting of high multidrug resistance organisms (MDRO) prevalence, a qualitative survey was designed. In July 2021, eighteen ID Units were asked to answer a questionnaire about their hospital characteristics, ASPs implementation status before the pandemic and impact of SARS-CoV-2 pandemic on ASPs after the 1st and 2nd pandemic waves in Italy. Nine ID centres (50%) reported a reduction of ASPs and in 7 cases (38.9%) these were suspended. After the early pandemic waves, the proportion of centres that restarted their ASPs was higher among the ID centres where antimicrobial stewardship was formally identified as a priority objective (9/11, 82%, vs 2/7, 28%). SARS-CoV-2 pandemic had a severe impact in ASPs in a region highly affected by COVID-19 and antimicrobial resistance but weaknesses related to the pre-existent ASPs might have played a role.


Subject(s)
Antimicrobial Stewardship , COVID-19 , Communicable Diseases , Antimicrobial Stewardship/methods , Humans , Pandemics , SARS-CoV-2 , Surveys and Questionnaires
6.
Heliyon ; 8(2): e08895, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1778151

ABSTRACT

COVID-19 tide had shattered on European countries with three distinct and tough waves, from March and April, 2020; October and November, 2020 and March and April, 2021 respectively. We observed a 50% reduction in the hazard of death during both wave II and III compared with wave I (HR 0.54, 95%CI 0.39-0.74 and HR 0.57, 95%CI 0.41-0.80, respectively). Sex and age were independent predictors of death. We compare in-hospital mortality of COVID-19 patients admitted at our Referral Hospital of Northern Italy during the different waves, discuss the reasons of the observed differences and suggest approaches to the challenges ahead.

7.
iScience ; 25(2): 103743, 2022 Feb 18.
Article in English | MEDLINE | ID: covidwho-1611783

ABSTRACT

Information concerning the longevity of immunity to SARS-CoV-2 following natural infection may have considerable implications for durability of immunity induced by vaccines. Here, we monitored the SARS-CoV-2 specific immune response in COVID-19 patients followed up to 15 months after symptoms onset. Following a peak at day 15-28 postinfection, the IgG antibody response and plasma neutralizing titers gradually decreased over time but stabilized after 6 months. Compared to G614, plasma neutralizing titers were more than 8-fold lower against variants Beta, Gamma, and Delta. SARS-CoV-2-specific memory B and T cells persisted in the majority of patients up to 15 months although a significant decrease in specific T cells, but not B cells, was observed between 6 and 15 months. Antiviral specific immunity, especially memory B cells in COVID-19 convalescent patients, is long-lasting, but some variants of concern may at least partially escape the neutralizing activity of plasma antibodies.

8.
Clin Microbiol Infect ; 28(2): 301.e1-301.e8, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1474453

ABSTRACT

OBJECTIVES: To assess the humoral and cell-mediated response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) elicited by the mRNA BNT162b2 vaccine in SARS-CoV-2-experienced and -naive subjects against a reference strain and SARS-CoV-2 variants. METHODS: The humoral response (including neutralizing antibodies) and T-cell-mediated response elicited by BNT162b2 vaccine in 145 healthcare workers (both naive and positive for previous SARS-CoV-2 infection) were evaluated. In a subset of subjects, the effect of SARS-CoV-2 variants on antibody level and cell-mediated response was also investigated. RESULTS: Overall, 125/127 naive subjects (98.4%) developed both neutralizing antibodies and specific T cells after the second dose of vaccine. Moreover, the antibody and T-cell responses were effective against viral variants since SARS-CoV-2 NT Abs were still detectable in 55/68 (80.9%) and 25/29 (86.2%) naive subjects when sera were challenged against ß and δ variants, respectively. T-cell response was less affected, with no significant difference in the frequency of responders (p 0.369). Of note, two doses of vaccine were able to elicit sustained neutralizing antibody activity against all the SARS-CoV-2 variants tested in SARS-CoV-2-experienced subjects. CONCLUSIONS: BNT162b2 vaccine elicited a sustained humoral and cell-mediated response in immunocompetent subjects after two-dose administration of the vaccine, and the response seemed to be less affected by SARS-CoV-2 variants, the only exceptions being the ß and δ variants. Increased immunogenicity, also against SARS-CoV-2 variant strains, was observed in SARS-CoV-2-experienced subjects. These results suggest that triple exposure to SARS-CoV-2 antigens might be proposed as valuable strategy for vaccination campaigns.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , BNT162 Vaccine , COVID-19 Vaccines , Health Personnel , Humans , Vaccination , Vaccines, Synthetic , mRNA Vaccines
10.
Am J Otolaryngol ; 43(1): 103170, 2022.
Article in English | MEDLINE | ID: covidwho-1347477

ABSTRACT

PURPOSE: New-onset olfactory and gustatory dysfunction (OGD) represents a well-acknowledged COVID-19 red flag. Nevertheless, its clinical, virological and serological features are still a matter of debate. MATERIALS AND METHODS: For this cohort study, 170 consecutive subjects with new-onset OGD were consecutively recruited. Otolaryngological examination, OGD subjective grading, nasopharyngeal swabs (NS) for SARS-CoV-2 RNA detection and serum samples (SS) collection for SARS-CoV-2 IgG quantification were conducted at baseline and after one (T1), two (T2) and four weeks (T3). RESULTS: SARS-CoV-2 infection was confirmed in 79% of patients. Specifically, 43% of positive patients were detected only by SS analysis. The OGD was the only clinical complaint in 10% of cases. Concurrent sinonasal symptoms were reported by 45% of patients. Subjective improvement at T3 was reported by 97% of patients, with 40% recovering completely. Hormonal disorders and RNA detectability in NS were the only variables associated with OGD severity. Recovery rate was higher in case of seasonal influenza vaccination, lower in patients with systemic involvement and severe OGD. Not RNA levels nor IgG titers were correlated with recovery. CONCLUSION: Clinical, virological and serological features of COVID-19 related OGD were monitored longitudinally, offering valuable hints for future research on the relationship between host characteristics and chemosensory dysfunctions.


Subject(s)
COVID-19/complications , Olfaction Disorders/immunology , Olfaction Disorders/virology , Taste Disorders/immunology , Taste Disorders/virology , Adult , Female , Humans , Immunoglobulin G/immunology , Male , Middle Aged , SARS-CoV-2/immunology
11.
J Pers Med ; 11(8)2021 Jul 31.
Article in English | MEDLINE | ID: covidwho-1335139

ABSTRACT

Despite low rates of bacterial co-infections, most COVID-19 patients receive antibiotic therapy. We hypothesized that patients with positive pneumococcal urinary antigens (PUAs) would benefit from antibiotic therapy in terms of clinical outcomes (death, ICU admission, and length of stay). The San Matteo COVID-19 Registry (SMACORE) prospectively enrolls patients admitted for COVID-19 pneumonia at IRCCS Policlinico San Matteo, Pavia. We retrospectively extracted the data of patients tested for PUA from October to December 2020. Demographic, clinical, and laboratory data were recorded. Of 469 patients, 42 tested positive for PUA (8.95%), while 427 (91.05%) tested negative. A positive PUA result had no significant impact on death (HR 0.53 CI [0.22-1.28] p-value 0.16) or ICU admission (HR 0.8; CI [0.25-2.54] p-value 0.70) in the Cox regression model, nor on length of stay in linear regression (estimate 1.71; SE 2.37; p-value 0.47). After adjusting for age, we found no significant correlation between urinary antigen positivity and variations in the WHO ordinal scale and laboratory markers at admission and after 14 days. We found that a positive PUA result was not frequent and had no impact on clinical outcomes or clinical improvement. Our results did not support the routine use of PUA tests to select COVID-19 patients who will benefit from antibiotic therapy.

13.
Clin Microbiol Infect ; 27(7): 1029-1034, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1163569

ABSTRACT

OBJECTIVES: SARS-CoV-2 T-cell response characterization represents a crucial issue for defining the role of immune protection against COVID-19. The aim of the study was to assess the SARS-CoV-2 T-cell response in a cohort of COVID-19 convalescent patients and in a group of unexposed subjects. METHODS: SARS-CoV-2 T-cell response was quantified from peripheral blood mononuclear cells (PBMCs) of 87 COVID-19 convalescent subjects (range 7-239 days after symptom onset) and 33 unexposed donors by ex vivo ELISpot assay. Follow-up of SARS-CoV-2 T-cell response was performed in ten subjects up to 12 months after symptom onset. The role of SARS-CoV-2 specific CD4 and CD8 T cells was characterized in a group of COVID-19 convalescent subjects. Moreover, neutralizing antibodies were determined in serum samples. RESULTS: In 14/33 (42.4%) unexposed donors and 85/87 (97.7%) COVID-19 convalescent subjects a positive result for at least one SARS-CoV-2 antigen was observed. A positive response was observed up to 12 months after COVID-19 infection (median 246 days after symptom onset; range 118-362 days). Of note, SARS-CoV-2 T-cell response seems to be mainly mediated by CD4 T cells. A weak positive correlation was observed between Spike-specific T-cell response and neutralizing antibody titre (p 0.0028; r2 = 0.2891) and positive SARS-CoV-2 T-cell response was observed in 8/9 (88.9%) COVID-19 convalescent subjects with undetectable SARS-CoV-2 neutralizing antibodies. DISCUSSION: Cross-reactive SARS-CoV-2 T-cell response in uninfected patients may be due to previous infections with other common coronaviruses. Our data suggest that long-term SARS-CoV-2 T-cell response might accompany a waning humoral response.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Immunologic Memory , SARS-CoV-2/immunology , Adult , Aged , Aged, 80 and over , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antigens, Viral/immunology , Cohort Studies , Convalescence , Cross Reactions , Enzyme-Linked Immunospot Assay , Female , Follow-Up Studies , Humans , Immunity, Cellular , Male , Middle Aged , Young Adult
14.
Med (N Y) ; 2(3): 281-295.e4, 2021 03 12.
Article in English | MEDLINE | ID: covidwho-1078082

ABSTRACT

BACKGROUND: Monitoring the adaptive immune responses during the natural course of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection provides useful information for the development of vaccination strategies against this virus and its emerging variants. We thus profiled the serum anti-SARS-CoV-2 antibody (Ab) levels and specific memory B and T cell responses in convalescent coronavirus disease 2019 (COVID-19) patients. METHODS: A total of 119 samples from 88 convalescent donors who experienced mild to critical disease were tested for the presence of elevated anti-spike and anti-receptor binding domain Ab levels over a period of 8 months. In addition, the levels of SARS-CoV-2 neutralizing Abs and specific memory B and T cell responses were tested in a subset of samples. FINDINGS: Anti-SARS-CoV-2 Abs were present in 85% of the samples collected within 4 weeks after the onset of symptoms in COVID-19 patients. Levels of specific immunoglobulin M (IgM)/IgA Abs declined after 1 month, while levels of specific IgG Abs and plasma neutralizing activities remained relatively stable up to 6 months after diagnosis. Anti-SARS-CoV-2 IgG Abs were still present, although at a significantly lower level, in 80% of the samples collected at 6-8 months after symptom onset. SARS-CoV-2-specific memory B and T cell responses developed with time and were persistent in all of the patients followed up for 6-8 months. CONCLUSIONS: Our data suggest that protective adaptive immunity following natural infection of SARS-CoV-2 may persist for at least 6-8 months, regardless of disease severity. Development of medium- or long-term protective immunity through vaccination may thus be possible. FUNDING: This project was supported by the European Union's Horizon 2020 research and innovation programme (ATAC, no. 101003650), the Italian Ministry of Health (Ricerca Finalizzata grant no. GR-2013-02358399), the Center for Innovative Medicine, and the Swedish Research Council. J.A. was supported by the SciLifeLab/KAW national COVID-19 research program project grant 2020.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Humans , Immunoglobulin A , Immunoglobulin G , T-Lymphocytes
15.
PLoS One ; 16(1): e0245281, 2021.
Article in English | MEDLINE | ID: covidwho-1067411

ABSTRACT

BACKGROUNDS: Validated tools for predicting individual in-hospital mortality of COVID-19 are lacking. We aimed to develop and to validate a simple clinical prediction rule for early identification of in-hospital mortality of patients with COVID-19. METHODS AND FINDINGS: We enrolled 2191 consecutive hospitalized patients with COVID-19 from three Italian dedicated units (derivation cohort: 1810 consecutive patients from Bergamo and Pavia units; validation cohort: 381 consecutive patients from Rome unit). The outcome was in-hospital mortality. Fine and Gray competing risks multivariate model (with discharge as a competing event) was used to develop a prediction rule for in-hospital mortality. Discrimination and calibration were assessed by the area under the receiver operating characteristic curve (AUC) and by Brier score in both the derivation and validation cohorts. Seven variables were independent risk factors for in-hospital mortality: age (Hazard Ratio [HR] 1.08, 95% Confidence Interval [CI] 1.07-1.09), male sex (HR 1.62, 95%CI 1.30-2.00), duration of symptoms before hospital admission <10 days (HR 1.72, 95%CI 1.39-2.12), diabetes (HR 1.21, 95%CI 1.02-1.45), coronary heart disease (HR 1.40 95% CI 1.09-1.80), chronic liver disease (HR 1.78, 95%CI 1.16-2.72), and lactate dehydrogenase levels at admission (HR 1.0003, 95%CI 1.0002-1.0005). The AUC was 0.822 (95%CI 0.722-0.922) in the derivation cohort and 0.820 (95%CI 0.724-0.920) in the validation cohort with good calibration. The prediction rule is freely available as a web-app (COVID-CALC: https://sites.google.com/community.unipa.it/covid-19riskpredictions/c19-rp). CONCLUSIONS: A validated simple clinical prediction rule can promptly and accurately assess the risk for in-hospital mortality, improving triage and the management of patients with COVID-19.


Subject(s)
COVID-19/mortality , Adult , Aged , Aged, 80 and over , COVID-19/epidemiology , Cohort Studies , Female , Hospital Mortality , Hospitalization/statistics & numerical data , Humans , Italy/epidemiology , Male , Middle Aged , Mobile Applications , ROC Curve , Retrospective Studies , Risk Assessment/methods , Risk Factors , SARS-CoV-2/isolation & purification
16.
Sci Rep ; 11(1): 1137, 2021 01 13.
Article in English | MEDLINE | ID: covidwho-1065934

ABSTRACT

An accurate prediction of the clinical outcomes of European patients requiring hospitalisation for Coronavirus Disease 2019 (COVID-19) is lacking. The aim of the study is to identify predictors of in-hospital mortality and discharge in a cohort of Lombardy patients with COVID-19. All consecutive hospitalised patients from February 21st to March 30th, 2020, with confirmed COVID-19 from the IRCCS Policlinico San Matteo, Pavia, Lombardy, Italy, were included. In-hospital mortality and discharge were evaluated by competing risk analysis. The Fine and Gray model was fitted in order to estimate the effect of covariates on the cumulative incidence functions (CIFs) for in-hospital mortality and discharge. 426 adult patients [median age 68 (IQR 56 to 77 years)] were admitted with confirmed COVID-19 over a 5-week period; 292 (69%) were male. By 21 April 2020, 141 (33%) of these patients had died, 239 (56%) patients had been discharged and 46 (11%) were still hospitalised. Among these 46 patients, updated as of 30 May, 2020, 5 (10.9%) had died, 8 (17.4%) were still in ICU, 12 (26.1%) were transferred to lower intensity care units and 21 (45.7%) were discharged. Regression on the CIFs for in-hospital mortality showed that older age, male sex, number of comorbidities and hospital admission after March 4th were independent risk factors associated with in-hospital mortality. Older age, male sex and number of comorbidities definitively predicted in-hospital mortality in hospitalised patients with COVID-19.


Subject(s)
COVID-19/mortality , Hospital Mortality , Registries/statistics & numerical data , Aged , Aged, 80 and over , COVID-19/epidemiology , Female , Humans , Italy/epidemiology , Male , Middle Aged , Risk Assessment
17.
Blood Adv ; 5(3): 662-673, 2021 02 09.
Article in English | MEDLINE | ID: covidwho-1063181

ABSTRACT

This study examined the association between dynamic angiopoietin-2 assessment and COVID-19 short- and long-term clinical course. We included consecutive hospitalized patients from 1 February to 31 May 2020 with laboratory-confirmed COVID-19 from 2 Italian tertiary referral centers (derivation cohort, n = 187 patients; validation cohort, n = 62 patients). Serum biomarker levels were measured by sandwich enzyme-linked immunosorbent assay. Lung tissue from 9 patients was stained for angiopoietin-2, Tie2, CD68, and CD34. Cox model was used to identify risk factors for mortality and nonresolving pulmonary condition. Area under the receiver operating characteristic curve (AUROC) was used to assess the accuracy of 3- and 10-day angiopoietin-2 for in-hospital mortality and nonresolving pulmonary condition, respectively. Three-day angiopoietin-2 increase of at least twofold from baseline was significantly associated with in-hospital mortality by multivariate analysis (hazard ratio [HR], 6.69; 95% confidence interval [CI], 1.85-24.19; P = .004) with AUROC = 0.845 (95% CI, 0.725-0.940). Ten-day angiopoietin-2 of at least twofold from baseline was instead significantly associated with nonresolving pulmonary condition by multivariate analysis (HR, 5.33; 95% CI, 1.34-11.77; P ≤ .0001) with AUROC = 0.969 (95% CI, 0.919-1.000). Patients with persistent elevation of 10-day angiopoietin-2 levels showed severe reticular interstitial thickening and fibrous changes on follow-up computed tomography scans. Angiopoietin-2 and Tie2 were diffusely colocalized in small-vessel endothelia and alveolar new vessels and macrophages. Angiopoietin-2 course is strongly associated with COVID-19 in-hospital mortality and nonresolving pulmonary condition. Angiopoietin-2 may be an early and useful predictor of COVID-19 clinical course, and it could be a relevant part of disease pathogenesis. Angiopoietin-2 blockade may be a COVID-19 treatment option.


Subject(s)
Angiopoietin-2/blood , COVID-19/pathology , Antiviral Agents/therapeutic use , Area Under Curve , Biomarkers/blood , COVID-19/mortality , COVID-19/virology , Hospital Mortality , Hospitalization , Humans , Interleukin-6/blood , Proportional Hazards Models , ROC Curve , Risk Factors , SARS-CoV-2/isolation & purification , Survival Rate , COVID-19 Drug Treatment
20.
J Public Health (Oxf) ; 43(1): 26-34, 2021 04 12.
Article in English | MEDLINE | ID: covidwho-900472

ABSTRACT

BACKGROUND: During the COVID-19 pandemic, the health care workers (HCWs) at the frontline have been largely exposed to infected patients, running a high risk of being infected by the SARS-CoV-2 virus.Since limiting transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in health care setting is crucial to avoid the community spread of SARS-CoV-2, we want to share our experience as an early hit hospital where standard infection control practices have been conscientiously applied and effective. We believe that our example, as first and hardest hit country, might be a warning and aid not only for those who have been hit later, but also for a second fearful wave of contagion. In addition, we want to offer an insight on modifiable risk factors for HWs-related infection. METHODS: Demographic, lifestyle, work-related and comorbidities data of 1447 HCWs, which underwent a nasopharyngeal swab for SARS-CoV-2, were retrospectively collected. For the 164 HCWs positive for SARS-CoV-2, data about safety in the workplace, symptoms and clinical course of COVID-19 were also collected. Cumulative incidence of SARS-CoV-2 infection was estimated. Risk factors for SARS-CoV-2 infection were assessed using a multivariable Poisson regression. RESULTS: The cumulative incidence of SARS-CoV-2 infection among the screened HCWs was 11.33% (9.72-13.21). Working in a COVID-19 ward, being a former smoker (versus being a person who never smoked) and BMI was positively associated with SARS-CoV-2 infection, whereas being a current smoker was negatively associated with this variable. CONCLUSIONS: Assuming an equal accessibility and proper use of personal protective equipment of all the HCWs of our Hospital, the great and more prolonged contact with COVID-19 patients remains the crucial risk factor for SARS-CoV-2. Therefore, increased and particular care needs to be focused specifically on the most exposed HCWs groups, which should be safeguarded. Furthermore, in order to limit the risk of asymptomatic spread of SARS-CoV-2 infection, the HCWs mild symptoms of COVID-19 should be considered when evaluating the potential benefits of universal staff testing.


Subject(s)
COVID-19/epidemiology , Personnel, Hospital , Adult , Body Mass Index , COVID-19/diagnosis , COVID-19/prevention & control , COVID-19 Nucleic Acid Testing , Female , Humans , Incidence , Infection Control , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Italy , Male , Middle Aged , Multivariate Analysis , Referral and Consultation , Retrospective Studies , Risk Factors , SARS-CoV-2/isolation & purification , Smoking
SELECTION OF CITATIONS
SEARCH DETAIL